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SUMMARY 2363 3/

Within the Born approximation and employing parabolic coordinates
an expression is found which gives the cross section, induced by elec-
tron collision, for excitation of the hydrogen atom from any initial state
to any final state. Using this expression the cross section in the energy
range of interest in plasma calculations for the following transitions
among the principal quantum numbers are tabulated: n=1,n" =2, 3, 4,
5,6,7,89,10; n=2,n"=3,4,5,6,7,8n=3,n"=4,5,6,7,8 n=4,
n =5,6; n=5,n" =6. In conclusion a curve for the total inelastic col-
lision of electrons and the hydrogen atom in its first five energy levels

is constructed.




I. INTRODUCTION

The excitation cross section in hydrogen induced by electron col-
lision calculated in the Born approximation is proportional to the

squared modulus of the atomic form factor given by

V(i, f) = jem’¢i(r)¢:(r)d3r,

where i, and Y, are the initial and final eigenfunctions of the atomic
electron and K is the magnitude of momentum transfer of the incident
electron. In this paper a closed form is found for the above expression
when Y, and J; are hydrogenic functions expressed in parabolic coor-
dinates. Elwertl (1955) has evaluated this expression with similar . -

specifications, although his final result is in differential form.

The main concern of this paper is the evaluation of the electron
impact induced excitation cross section between two arbitrary levels
of hydrogen, calculated in the Born approximation. Up to now many
calculations in the Born approximation have been carried out in this
respect, and tables of cross sections with initial states in the range
1-5 principal quantum numbers and final states 2-10 principal quantum
numbers are available,? 10 although for higher levels the calculations

are only for certain substates.

In this paper, after formulation of the problem, the results in

parabolic coordinates are compared with those in spherical coordinates,



and their consistencies are examined. The calculation is then extended
to higher levels, for which results are not available. All cross sections
are listed in different tables. It is hoped that these tables will be

useful in plasma and astrophysical calculations.




II. FORMULATION

Excitation Amplitude

Let the propagation vector of the exciting electron before and after
collision be designated by l‘o and l‘p and the states of the atom in
parabolic coordinates before and after collision by n;n,m and n,' n, m.

The excitation cross section in atomic units for such a collision is then

given byll
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annz being the normalization factor of the £, 7 eigenfunctions given

by Bethe and Salpeter,!? and also found in I. Similarly, an,n + is the
2

factor corresponding to £, n’. With this equation and the generating

function of the associated Laguerre polynomials (cf. Eq. (37), I) it




follows that
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Before we carry out the differentiation of U with respect to p, we

expand U in powers of s, s, t, t’'. . Consider the expansion
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y 1'1 (0, 0) representing the 4™ and the £ 'th derivatives of y(s, t) with
respect to s and t, evaluated at s = t @ 0. To evaluate y ! } (s, s’),

it is necessary to introduce
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It is convenient to introduce also

g = (1-s)1, h = (1-s')! . (9)

Then, making note of the relations

d
%lsi = ag2 , dv' — al h2 ,
S
d d
ds gn = rlgn'*l , _é,s_l h™ = nhn“'l ,

¢



it follows that

y¥¢(s, s'y = ag?y’ (u,v),
y20(S, S') = a2_g4 y2 (U, V) + 2ag3y' (U, V) ,
y¥(s,s') = a®gbyd(u, v) + 6a2gSy?(u, v) + bagty’ (u,v),

y” (u, v) being the v*" derivative of y(u, v) with respect to either u or

v. Inspection of the above equation shows that in general we can write

£
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v=1
with C(v, 1) some constants. This equation is identical to Eq. (59), I,
provided we let t s’ and a, ~a in the latter equation. The dependence
of y’[)'0 (s, s’') on y”(u, v) is then similar to the dependence of y'ﬁ'(s, t)
ony” (u, v) in I, and the C(v, ©) satisfies the following recursion

formula (cf. Eq. (60), I)

C(r,4+1) = (L+v)Cv,4) + C(v-1,4), (10)

with the boundary conditions,

C(v,4) = Owhen v = 0 or »>4, , C(,0) = C(1,1) = 1. (11)

A table of values of C(v, £)is given in I.




Finally, corresponding to Eq. (61), I, or by direct deduction, we

get
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With substitution of Eqs. (13, 15) in Eq. (5) we find
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Equating the coefficients of equal powers of s, s, t, t' of this equation

and the left-hand side of Eq. (3), and substituting the value (cf. Eq. (20), I)
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Here 7y stands for the set of 12 variable integers,
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subject to the restrictions
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in the transition n, n, m~n,’ n,m. Eq. (18) gives the desired excitation

amplitude.

Integration With Respect to K

When Eq. (18) is substituted in Eq. (1), and the integration is car-
ried out numerically with respect to K, the excitation cross section is
obtained. In some cases it is advantageous to carry this integration

analitically. To do this, we introduce
B = a+ta'; (21)
1
then by Eqs. (4, 14), a = 5 (8- iK). We introduce further:

n
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where N is the number of combinations in the set given by Eq. (19).

By writing
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and each summation extends over all possible values of p, q, t.

Noticing that .I(yz, 71) = I* ('yl, 72) , We can write

, 4rA? O\
Q(nl n,m, n;' n, m) = 2 Z Z G(’)’l) 0(72) [I (71’ ')’2) + I* (71, 72)]
0 YL y,E

(30)
By Eq. (28),

1 o o o to
I(ri, 72) *1*(71:7) = EZZ [(-) () ] () TP L(yy. @) L(vgr @)
s S

O‘+O’2
xJ‘T’2,2m+4+}\l+}\2,,82,x1x2> , (31)
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Notice that expression (31) is always real.

Symmetry Considerations

It is evident from Eq. (2) that
V(n1 n,m, n;’ n, m|—K) = V*(n1 n,m, n;' n, m|K) , (33)

V(n2 n,m n, n, m‘~K) = V(n1 n,m, n;' ny’ mIK) . (34)
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It follows that

IV(n1n2m, nl'nz'm|—K>‘2 = |V(n2n"1m, nz'nl'm\K)‘2 = lV(n1n2m, nl'nz'm|K)|2;

(35)
and, by Eq. (1),

Q(n2 n; m, n, n,’ m) = Q(nl n, m, n;' n,’ m) . (36)

Eqgs. (35, 36) are used to test the accuracy of the numerical results.

Multiplicity of States and the Total Cross Section

Since the direction of the z-axis is taken along the momentum
transfer vector K, the magnetic quantum number does not change in any

transition. As n +n,=n-m- 1, n, can take the values 0,1, 2, . . .,

n-m-1; or n-mvalues. The same is true of n, . Then the total num-
ber of combinations of n; and n, for a givenn andm is n - m. Similarly,

the total number of combinations of n and n, for a given n’ and m' is

n ~m.

Designating the cross section for the transition rmlnzm_.n’ n’l n'2 m

[}

by Q(nn n,m, n'n’

n'zm) , the cross section for the transition nnn,m - n'm

is obtained by summing the former cross section over all the final states

with a fixed m,

nl"m- 1
Q(nn n,m,n’m) = Q(nn, n,m, n'n n\ym), (37)
“l=°
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The cross section for the transition nm-n'm is obtained by averaging
Q(nn;n,m, n"m) over all the initial states with a fixedm,
n-m-1

Q(nm, n'm) = (n - m)_l Z Q(nn, n,m, n"m). - (38)

=0

nl_

The cross section for the transition n-n’' is obtained by averaging
Q(nm,n‘m) with respect to the magnitude of the magnetic quantum number

m,
n-1

Q(n,n’) = (2n - 1™ Z [2 - S(m,o)] Q(nm, n’m). (39)

m=0

Since the total number of the initial states is

n—1
Z [2 - S(m,o)] (n - m) = n?, (40)
m=0 .
Eq. (39) can be written alternatively as
;E:: n-m-1 ]
Q(n, n Z - &(m, 0)| Q(nnn,m, n'm) | (41)
m=0 n;=0

It is interesting to note that the number of independent transitions
between the levels n and n' is given by
n-1

N - Z [2-8(m 0)] (n —m) (n' —m).

m=0

When the right hand side is evaluated we obtain

N = n? (n' _2> 2 (42)

15



III. RESULTS AND DISCUSSION

We have calculated within the Born approximation the excitation
cross section of the hydrogen atom by electron collision for the tran-
sitionsn=1 ton' =2,3,4,5,6,7,8,9,10; n=2ton’ = 3,4,5,6,7,8;
n=3ton’ =4,5,6,7,8, n=4ton’ =5,6;andn =5 ton’ = 6 by
employing parabolic coordinates. Previous similar calculations in the
Born approximation using spherical coordinates have been made for
the transitions n =1 ton’ = 2, 3, 4,5, 6 by Mc Carroll4; nd = 2s to
n" =3,4,5,6,7,8,9,10 by Boyd>s nt = 2p, m=0, 1ton' = 3,4,5,6,
7, 8,9, 10 by McCrea and McKirgan® n = 3 ton’ = 4 by McCoyd,
Milford and Wahl?. There are few other calculations for certain op-
tically allowed transitions between sublevels of higher levels but they

do not give the total transition cross section between two levels.

As a check on the consistency of the calculations, comparisons are
made in this paper with all the values available in spherical coordinates.
Table I gives the excitation cross section from the ground state in both
coordinates. The agreement is excellent. The cross section due to all

higher states which are not listed explicitly can be calculated by a

@
method given in Ref. 4. This is designated by E Q(1, 1), where n

i=nt+l
is the upper state of the highest transition whose cross section is

listed in the table. Q(T)is the total excitation cross section.

Table II compares the cross sections in the two coordinates for.

the transition n = 2 ton’ = 3 . Theoretically we must have

16




Q(2pt1) = Q(00, 01) + (00, 10) = 2Q(00, 01) (43)

H

Q(01, 02) + Q(01, 11) + Q(01, 20)
+ Q(10, 02) + Q(10, 11) + Q(10, 20)
[2 o1, 02) + QCo1, 11) + Q(01, 20)] (44)

Q(2s) + Q(2p 0)

1l

where Q(n;n,, n,'n,’) is the cross section for the transition between

the sublevels n n, and nl’ n2’ , and where use has been made of the

1
symmetry relation (36). The above equations are shown to be satisfied
in Table II. Q(2, 3) is the excitation cross section for the transition

n =2 ton’ = 3, averaged over the initial states and summed over the

final states.

For brevity in the remaining of the tables only the averaged cross
section for transition between the principal quantum numbers are
listed. Table III gives the cross section for the transitions n = 2 to
n’ = 4,5,6,7, 8, and the total excitation cross section from the n = 2
level. Table IV is constructed to verify the excitation cross sections
for n = 3 to n’ = 4 as obtained in Ref. 7. Although the agreement is
satisfactory, at low energy the two results differ to some extent. As
our values are obtained both by the closed and the integral forms, and
in the case of the integral form convergence to the numbers given is

achieved by decreasing the mesh sizes of the numerical integration,

it is believed that our results are more accurate.

Table V gives the excitation cross section for the n = 3 to the
n’ = 4,5,6,7, 8 levels, and the total excitation cross section from the

n = 3 level. The contribution to the total cross section of the states

17



not listed is obtained by the method outlined in Ref. 4 and the known

value of ionization of the n = 3 as given in I.

To test the accuracy of the Born approximation, it is necessary to
compare the result of the Born calculation with experiment. This is
done in Fig. 1 along with the more elaborate theoretical calculation of

close coupling 13, 14

, and the classical theory of excitation given by
Gryzinski 15, According to this classical theory, if the energy of the

incident electron is given as E, in rydberg and the atom is excited

from the state n to n’, the excitation cross section is given by

, n' ,n' 1
Q(n, n') = o, n*a(l+a) ¥? g(rh1 nz)2 __g(n,n Z :
n n
@] -Ew) ]
2 1 <
—ay” t(1ta)yy -3 ay <1,
B(n, n®) = 2 3/2
5 [avzraray]™, ay > 1,
2
TR T C e

Compared to experiment, the Born approximation gives too high
values, the classical theory gives too low, and the close coupling ap-

proximation gives the best agreement.

The disagreement between Born calculations and experiment may

get worse for the excitation of higher states. This is due to the form

18




of the wave function of the bound electron. Since hydrogenic wave func-
tion is used to evaluate the matrix elements of the Born calculations, it
is implicitly assumed that the interaction potential between the two
electrons is small compared with the interaction of the nucleus and

the atomic electron. This, however, may not be the case for the excited
states where the average distance of the electron from the nucleus

is large.

Fig. 2 compares different excitation cross sections and the ioniza-

tion cross section of the n = 1 level. Figs. 3 and 4 make the same
comparison for then = 2and the n B 3levels.
Table VI gives the excitation cross section of n = 4 to n" =5, 6;

and the total excitation cross section for this level, while Table VII
gives the excitation cross sectionofn = 5 ton’ = 6. Figs. 5 and 6
show the results of these tables graphically. In Fig. 6 the classical
curve is also drawn for comparison. The classical description of the
excitation is open to question as transition to discrete levels cannot

be described classically.

Although the excitation of the ground state of hydrogento the 2p state
has an order of magnitude larger cross section than the excitation to
the 2s state, especially at high incident electron energies”’ 14 it should
be argued that this does not mean that for the excitation of higher
states the cross section of non-optically allowed transitions can be
neglected. This neglect is valid when Ka << 1, where K is the magni-

tude of the momentum transfer of the incident electron and a is the

19



extent of the charge distribution of the bound electron before and after
collision. For the excitation of high levels, a becomes more than an
order of magnitude larger than the corresponding a for the ground state.
This fact is evidenced by noting that the excitation cross section for
optically allowed transitions in n = 5 ton’ = 6 given in Ref. 9 is con-
siderably lower than that given in Fig. 6. Similarly it can be argued
that the dipole approximation within the Born approximation becomes

less valid for excitation of the higher levels.

Fig. 7 gives the total inelastic cross section by electron collision,
including excitations to all levels and ionizations, for the first 5 levels

of atomic hydrogen.

In closing it should be mentioned that the cross section for de-
excitation induced by electron collision is obtained through

ki
Qf, 1) = Tk, Q(i, ),

where Q(i, f) is the corresponding excitation, and k, andk, are the
initial and final wave numbers of the incident electron in the excitation

process.

I wish to thank Robert Baxter for the efficient programming of this
problem, Bernard Rugg for taking control over the production of the

tables, and the Computing Branch of the Theoretical Division for pro-

viding their generous services.
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Table II. Excitation cross sections among the sublevels of n = 2 -

n' = 3 transition in units of 7 aZ. m is the absolute value of the magnetic
quantum number. Cross sections in parabolic coordinates are desig-
nated by Q(n; n,, nj n!) with n; n, and n;n, belonging to the initial and
the final states. Zl is the sum of Q(2s) and Q(2p0), while z, is the sum
of the three cross sections preceding2,. Note has been taken of the
relation Q(n1 n, l’ n;) = Q(n2 n, ; n;). The last two columns show
the excitation cross section of n = 2 to n' = 3 in spherical and parabolic

coordinates.

s s N

Impact Energy m =1 m =0 Q(2,3)

ryd eV |0Q(2p:l)| 20(00,01) Q(Zs)bi Q(ZpO)-] s ‘ 20(01,02) I 20(01,11) | 2Q(01,20) | %, S P
0.36 | 4.90 | 76.515 | 71.685 |65.019 | 74.837 | 69.928 | 49.139 20,145 0.6227 |69.907 | 73.222 | 70.796
0.6;4 8.70 57.440 57.441 49.441 | 64.529 | 56.985 39.983 16.628 0.3730 56.984 57,213 {1 57.213
1.00 | 13.60 | 45.051 | 45.050 |37.667 |52.482 | 45.074 | 31.597 13.232 0.2448 |45.074 | 45.063 | 45.062
1.44 | 19.58 | 35,937 | 35,938 |29.488 |42.803 | 36.146 | 25.323 10.649 0.1727 |36.145 | 36,042 | 36.042
1.96 | 26.66 | 29.278 | 29.278 |23.703 |35.403 | 29.553 | 20.695 8.7283 | 0.1284¢ |29.552 | 29.416 | 29.415
2.56 | 33.43 | 24.313 | 24.315 | 19.488 |29.727 | 24.608 17.228 7.2813 | 0.0993 |24.609 | 24.461 | 24.462
3.24 | 44.06 | 20.535 | 20.533 |16.326 |25.324 | 20.825 14.575 6.1694 | 0.0791 |20.824 | 20.680 | 20.679
4.00 | 54.40 | 17.587 | 17.588 |13.895 |21.836 | 17.866 12.501 5.2987 | 0.0645 |17.864 | 17.727 | 17.726
4.84 | 65.82 | 15.248 | 15.255 |11.984 |19.038 | 15.511 10.856 4.6066 | 0.0537 |15.516 | 15,380 | 15.386
5.76 | 78.34 | 13.360 | 13.370 |10.452 |16.759 | 13.606 9.5244 4.0450 | 0.0454 |13.615 | 13.483 | 13.493
6.76 91.94 11.812 11.813 9.206 |14.876 | 12.041 8.4221 3.5795 0.0388 12,040 11.927 | 11.927
7.84 1106.62 | 10.527 | 10.527 8.176 113.304 | 10.74 7.5112 3.1945 | 0.0336 |10.739 | 10.634 | 10.633
9.00 [122.40 | 9.447 9.448 7.317 |11.976 | 9.647 | 6.7453 2.8704 | 0.0294 | 9.6451 | 9.547 | 9.547

a. See Ref. 6.
b. See Ref. 5.




Table III. Excitation cross sections of n = 2 levelton' = 4, 5, 6, 7,
8 levels in spherical and parabolic coordinates in units of =7 ag. For
spherical coordinates see Ref. 5,6.

Impact Energy Q(2,4) Q(2,5) Q(2,6) o2.7) Q(2.8) >

- Z Q(2,i)| Q(T)
ryd ev s P S P S P s P s* P Ty
0.16 2.18
0.2025 2.75 7.385
0.25 3.40 12.016 3.933 1.706 0.868 0.491 0.570 92.037
0.36 4.90 13,362 | 13,227 |4.977 | 4.941 | 2.459 | 2.435 | 1.392 | 1.395| 0.879 | 0.880 1.566 95.240
0.64 8.70 10.791 | 10.794 | 4.117 | 4.104 | 2,059 | 2.049 | 1.182 | 1.186 | 0.752 | 0.753 1.351 77.433
1.00 13.60 8.335 8.334 |3.168 | 3.151 [ 1.575 | 1.570 | 0.907 | 0.907 | 0,576 | 0.576 1.033 60.633
1.44 19.58 6.539 6.538 |2.467 § 2.456 | 1.226 | 1.220 | 0.704 6.704 0.444 | 0.446 0.800 48.206
1.96 26.66 5.251 5.250 |1.970 | 1.960 | 0.972 | 0.971 | 0.560 |0.559 | 0.357 | 0.354
2.56 33.43 4.308 4.309 {1.608 | 1.601 | 0.792 | 0.791 | 0.455 ] 0.455 | 0.284 | 0.288
3.24 44.06 3.602 3.602 |1.338 | 1,332 | 0.656 | 0.657 | 0.378 {0.378 | 0.238 | 0.239 0.427 27.314
4.00 54.40 3.059 3.059 | 1,132 | 1.127 { 0.556 {0.555 | 0.319 |0.319 | 0.202 | 0.201
4.84 65.82 2,627 2.632 |0.971 | 0,968 | 0.476 | 0.475 | 0,271 |0.272 | 0.173 | 0.173
5.76 78.34 2.292 2.293 10.843 | 0.840 | 0.413 {0.412 [ 0,237 | 0.236 | 0.149 | 0.149
6.76 91.94 2.015 2.016 [0.740 { 0,737 [0.361 | 0.361 |0.207 |0.207 | 0.131 | 0.131
7.84 106.62 1.787 1.792 10.653 | 0.652 | 0.319 {0.319 [ 0.183 | 0.183 | 0.116 | 0.116
9.00 122.40 1,601 1.596 [0.584 | 0.582 [ 0.287 |0.284 {0.163 |0.163 | 0.102 | 0.103

a. By interpolation.



Table IV. Comparison of the excitation cross section for the tran-

sition n = 3 to n' = 4 in spherical and parabolic coordinates in units of

mal. For spherical coordinates see Ref. 7.

I ryd 0.0543 0.0574 0.0616 0.0711 0.1988
mpact
Energy ' v 0.7391 0.7809 0.8384 0.9675 2.704

S 400.66 481.35 555.96 653.24 617.59
Q(3,4)

P | 416.20 494,92 569.64 665.55 623.06
Impact | TV 0.2394 1.021 4,366 8.882 | 100.1
Energy | v 3.256 | 13.89 59.38 | 120.8 136.1

S 567.33 231.83 77.103 43,375 5.513
Q(3,4)

= 572.67 233.86 77.884 44.088 6.704




Table V.

Excitation cross section for the transitionn = 3 to n' =
4,5, 6, 7, 8, in units of 7 ag.

Impact Energy

o
Q(3.4) | Q3,5 | Q(3.6) | Q(3,7) | Q(3,8) Z Qi) | Q)

ryd eV ry

0.07 0.95 657.13

0.08 1.09 709.21 83.365

0.111] 1.51 | 735.25 [126.98 | 42.918|19.164 | 9.941| 12.037 946.290

0.16 | 2.18 | 676.85 [125.33 | 47.257 | 23.564 | 13.668| 22.860 909.529

0.36 4.90 460.91 83.690 | 31.858 | 16.084 9.436 16.018 617.996

0.64 8.70 322.31 56.347 | 21.160 | 10.615 6.208 10,517 427.157

1,00 13.60 237.39 40,326 | 14.976 7.474 4.352 7.355 311.873

1.44 19.58 182.51 30.340 | 11.193 5.549 3.228

1.96 26.66 145,08 23.692 8.689 4.290 2.489

2.56 33.43 118.43 19.067 6.941 3.453 1.991

3.24 44,06 98.510| 15,709 5.699 2.805 1.621

4,00 54.40 83.477( 13.193 4.753 2.341 1.380 2.298 107.44

6.25 85.00 58.489 9,118 3.246 1.607 0.967

9.00 |122.4 43.624 6.713 2.3717 1.186 0.661




Table VI. Excitation cross section for the transitionn = 4 to n'

5, 6.
Impact Energy Q(4,5) Q(4,6) Z Q(4,i) Q(T)
i=7

ryd eV mal 7 aZ 7 a2 7 a2
0.03 0.408 3081.30
0.04 0.544 | 3778.20 | 432.49
0.0625 0.850 3794.63 660.11 548.98 5003.72
0.111 1.510 3137.40 570.52
0.16 2.176 2583.94 | 462.07 474.59 3520.60
0.36 4.896 | 1566.94 | 264.25 269.03 2100.22
0.64 8.704 1049.78 169.66 171.37 1390.81
1.00 13.60 758.89 118.64 119.22 996.75
1.44 19.58 581.06 88.146
1.96 26.66 450.49 68.524
2.56 33.43 366.69 54,312
3.24 44,06 306,32 44.569
4.00 54,40 261.54 37.364
6.25 85.00 190,23 25.869
9.00 122.4 150.46 19.385




Table VII. Excitation cross section for the transition n = 5 to n' =
6 in units of 7 a2.

0

ryd . 0.0169 0.0225 0.04 0.111 0.16
Impact
Energy| v 0.230 0.306 0.544 1.510 2.176
Q(5,6) |7a2|11,307.87 |13,791.58 |13,588.04 8,698.01 6,889.87
ryd 0.36 0.64 1.00 1.44 1.96
Impact
Energyl v 4.896 8.704 13.60 19.58 26.66
Q(5,6) |ma2| 3,979.62 2,628.03 1,907.17 1,485.27 1,221.40
ryd 2.56 3.24 4.00 6.25 9.00
Impact
Energyl v 33.43 44.06 54.40 85.00 122.4
Q(5,6) | wa2 | 1,047.77 928.78 844.50 718.80 654.35
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